Is the Universe Open-Ended?

TO BE FREE: If we could disentangle the quadrillions of molecular and atomic interactions in a brain, and the ever-so-subtle nudges of quantum uncertainty, we might restore some kind of free will to ourselves.whitehoune / Shutterstock

An intriguing proposal about what makes reality tick under the surface.


One of my favorite albeit heavily paraphrased quotes from Albert Einstein is his assertion that the most incomprehensible thing about the universe is that it is comprehensible. (What he actually said, in his 1936 work “Physics and Reality,” is more longwinded, and includes a digression into Immanuel Kant and the meaning of “comprehensibility,” but he does write “… the eternal mystery of the world is its comprehensibility.”) In truth, this statement holds back a little. The greater mystery is that the universe is actually capable of self-comprehension.

From a time nearly 14 billion years ago when all matter and energy existed in an exquisitely uniform and boring state, the cosmos has evolved to contain complex structures that—in at least one tiny spot in our solar system—have gained mysterious things like agency and consciousness that compel them to try to decode reality. In doing so they (meaning we) also produce interpreted versions of reality that they place in a “dataome.”

By dataome, I mean all of the data (and the information it contains) that we generate, utilize, and propagate but which is not encoded in our DNA. The dataome encompasses cave paintings to books, flash drives to cloud servers, and all the structures built in service of those things. We exist in an uneasy symbiosis with this dataome, whose interests may not always align with ours even though the information it carries for us is critical for our evolutionary success. That includes the information we create describing our experience of reality itself.

Every equation of physics or every computer simulation of how planets, stars, and galaxies orbit and evolve, is a bizarre imprint of an interpretation of the universe by the universe, built into the universe by the rearrangement of its atoms into a dataome. But there’s an even deeper perspective: Was all of this really inevitable? Did we ever have a choice in creating a dataome or doing any of the things we do, and does any self-aware entity in the universe have a choice either?

In a wonderfully lively, and extraordinarily ideas-dense, near 70-page long 2013 essay titled “The Ghost in the Quantum Turing Machine,” the theoretical computer scientist Scott Aaronson goes deep in search of arguments for and against such free will. It’s such fun that I want to spend some time with it here. He points out that many of us conflate the idea of random unpredictability with free will. For example, I can feel like I’m exerting free will if I, well, I don’t know, spontaneously write the word “sponge” here. It certainly seems entirely random.

That, Aaronson argues, is probably not right because what we call randomness actually follows well-defined statistical rules of probability, and in that sense is never “free.” Its unpredictability is predictable. By contrast there is a class of unpredictable phenomena that can’t be measured by random probabilities; they have a different form of unpredictability. This is described by a property called Knightian uncertainty after one Frank Knight, an economist working on these ideas in the 1920s. In modern vernacular this is very much like the “black swan event” idea popularized skillfully by the writer and mathematical thinker Nassim Taleb. A black swan event is extremely rare, impacts the world greatly, and has explanations invented for it after the fact. But if that event or behavior can’t ever be objectively quantified by probabilities it’s likely in the category of Knightian uncertainty.

There is no neat and tidy probabilistic solution. It will never be known why the chicken crossed the road.

Here’s an example based off of Aaronson’s explanation: Imagine that a computer program generates random numbers as part of its operation. Perhaps it’s picking random color mixtures for its screen-saver. But if it picks the number 669988 there is a bug in its code that will cause it to crash. The original programmer knew this, but since 669988 is merely one choice out of a million possibilities for this six-digit number, they decided those were acceptable odds…


F. Kaskais Web Guru

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s