Your Brain Is Like Beethoven

Your Brain Is Like Beethoven – Issue 107: The Edge – Jioforme

We survive noise by transforming it into patterns, like composers create music.


Prior to the rise of urban culture, the sounds of clucking hens must have been among the world’s most ubiquitous annoyances. For millennia, humans have been “up with the chickens,” demarcating time by the rooster’s crow. But the infernal clucking of poultry must have constituted a constant din. It seems odd, then, that this obnoxious noise has found its way into a vast repertoire of music, from “La Poule” by French composer Jean-Philippe Rameau in 1726 to “Chick Chick” by Chinese pop singer Wang Rong Rollin in 2014.

But poultry is not the exception. The noises of life—both annoying and pleasant—have been represented through mimicry or abstraction in all music cultures. Schubert used the sound of galloping horses to haunting effect in his ballad, “Erlkonig,” a sound also heard in music played on traditional Chinese instruments. Tuvan throat singing often imitates the sounds of rushing water and whistling wind. Beethoven orchestrated birdsong and thunderstorm. With the development of tools and machines, noises created by humans have also permeated music. Schubert, Dvorak, and Saint-Saens transformed the obstinate repetition of the spinning wheel to melodious patterns.

FEAR FREQUENCY: Scary music activates the same brain areas implicated in fear and threat. Bernard Hermann tapped those areas with screeching violins in Psycho’s famous shower scene. John Williams did the same with rumbling low frequencies in his Jaws soundtrack.Universal Studios

As machinery became pervasive and increasingly loud, so did its presence in music. In composer Steve Reich’s 1969 work, City Life, the sounds of car alarms supplant the infernal clucking of the hen in Rameau’s “La Poule,” aestheticizing our urban soundscape. In fact, the car alarms and clucking share common acoustic features. Both are obstinate rhythmic patterns with a significant component of noise—highly repetitive yet unnervingly unpredictable. These are precisely the characteristics that make noises annoying and their musical use endearing.

The way composers weave environmental noise into the fabric of their music has an interesting story to tell us: It mirrors how the human brain manages noise—how it transforms noise into something palatable and even exciting. Noise represents disorder and uncertainty. We try to fight through it and find coherence. It’s a process that involves evolutionary adaptations for managing risk and uncertainty. And a process that calls on the body’s natural rhythms to establish order. Like a drum roll that prepares us for something dramatic, noise sets in motion mental steps that harness cacophony. We live by making music out of a noisy world.

Music and motion are biologically linked. We march to music, dance to music, rock babies to sleep to music. We sway, bop, and shimmy to music. But it isn’t just rhythm and entraining to the beat that makes us move.

Acoustic noise itself generates a kinetic response. The etymology of the term bears this out. The Hebrew word for noise, “ra’ash,” is synonymous with shaking. The term appears in the Bible typically describing wrathful and furious destruction. Coined in much quieter times than today, the word noise shares its etymological root with the Latin “nausea,” which, in turn, is rooted in the Greek “naus” or ship. Noise, although an auditory phenomenon, is strangely related to seasickness, a result of the odd conjoining of the auditory and vestibular systems.

The fact that the ear combines the auditory and vestibular mechanisms is a peculiar outcome of evolution; in the transition from sea to land, fish gill arches became inner ear bones, and integrated balance with vibratory signal sensation. The sacculus, the vestibular organ responsible for balance regulation that goes haywire on rollercoasters, is responsive to sound. That powerful drive to boogie when we hear loud, driving, rhythmic music originates in the vestibular system. As composer John Adams described his orchestral work, A Short Ride in a Fast Machine, “You know how it is when someone asks you to ride in a terrific sports car, and then you wish you hadn’t?”

In addition to noise-related anxiety and confusion, prolonged loud noise can be physically disorienting. Phylogenetically, the auditory system evolved from the vestibular system. Along with the hair cells that detect sound in the cochlea, the vestibular nerve contains fibers that respond to acoustic signals. In uncommon cases, loud, sudden noise can generate a sense of unbalance, which can translate into the same unsettling physical instability generated by rapid motion. Think of it as auditory vertigo…


F. Kaskais Web Guru

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s