Quantum computers: Eight ways quantum computing is going to change the world

Four Ways Quantum Computing Could Change The World
image edited by F. Kaskais

Businesses are already exploring the future potential of quantum computers, and some industries anticipate big changes ahead.

By Daphne Leprince-Ringuet

The world’s biggest companies are now launching quantum computing programs, and governments are pouring money into quantum research. For systems that have yet prove useful, quantum computers are certainly garnering lots of attention.

The reason is that quantum computers, although still far from having reached maturity, are expected to eventually usher in a whole new era of computing — one in which the hardware is no longer a constraint when resolving complex problems, meaning that some calculations that would take years or even centuries for classical systems to complete could be achieved in minutes.

From simulating new and more efficient materials to predicting how the stock market will change with greater precision, the ramifications for businesses are potentially huge. Here are eight quantum use cases that leading organisations are exploring right now, which could radically change the game across entire industries. 


The discovery of new drugs relies in part on a field of science known as molecular simulation, which consists of modelling the way that particles interact inside a molecule to try and create a configuration that’s capable of fighting off a given disease.

Those interactions are incredibly complex and can assume many different shapes and forms, meaning that accurate prediction of the way that a molecule will behave based on its structure requires huge amounts of calculation.

Doing this manually is impossible, and the size of the problem is also too large for today’s classical computers to take on. In fact, it’s expected that modelling a molecule with only 70 atoms would take a classical computer up to 13 billion years.

This is why discovering new drugs takes so long: scientists mostly adopt a trial-and-error approach, in which they test thousands of molecules against a target disease in the hope that a successful match will eventually be found.

Quantum computers, however, have the potential to one day resolve the molecular simulation problem in minutes. The systems are designed to be able to carry out many calculations at the same time, meaning that they could seamlessly simulate all of the most complex interactions between particles that make up molecules, enabling scientists to rapidly identify candidates for successful drugs. 

This would mean that life-saving drugs, which currently take an average 10 years to reach the market, could be designed faster — and much more cost-efficiently.

Pharmaceutical companies are paying attention: earlier this year, healthcare giant Roche announced a partnership with Cambridge Quantum Computing (CQC) to support efforts in research tackling Alzheimer’s disease.

And smaller companies are also taking interest in the technology. Synthetic biology start-up Menten AI, for example, has partnered with quantum annealing company D-Wave to explore how quantum algorithms could help design new proteins that could eventually be used as therapeutic drugs.


From powering cars to storing renewable energy, batteries are already supporting the transition to a greener economy, and their role is only set to grow. But they are far from perfect: their capacity is still limited, and so is their charging speed, which means that they are not always a suitable option. 

One solution consists of searching for new materials with better properties to build batteries. This is another molecular simulation problem — this time modelling the behaviour of molecules that could be potential candidates for new battery materials.

Similar to drug design, therefore, battery design is another data-heavy job that’s better suited to a quantum computer than a classical device.  

This is why German car manufacturer Daimler has now partnered with IBM to assess how quantum computers could help simulate the behaviour of sulphur molecules in different environments, with the end-goal of building lithium-sulphur batteries that are better-performing, longer-lasting and less expensive that today’s lithium-ion ones.


Despite the vast amounts of compute power available from today’s cutting-edge supercomputers, weather forecasts — particularly longer-range ones — can still be disappointingly inaccurate. This is because there are countless ways that a weather event might manifest itself, and classical devices are incapable of ingesting all of the data required for a precise prediction. 

On the other hand, just as quantum computers could simulate all of the particle interactions going on within a molecule at the same time to predict its behaviour, so could they model how innumerable environmental factors all come together to create a major storm, a hurricane or a heatwave. 

And because quantum computers would be able to analyse virtually all of the relevant data at once, they are likely to generate predictions that are much more accurate than current weather forecasts. This isn’t only good for planning your next outdoor event: it could also help governments better prepare for natural disasters, as well as support climate-change research…



F. Kaskais Web Guru

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s